Exercise 3.3.6

For the following functions, sketch the Fourier cosine series of $f(x)$. Also, roughly sketch the sum of a finite number of nonzero terms (at least the first two) of the Fourier cosine series:
(a) $\quad f(x)=x$ [Use formulas (3.3.22) and (3.3.23).]
(b) $f(x)=\left\{\begin{array}{ll}0 & x<L / 2 \\ 1 & x>L / 2\end{array}\right.$ [Use carefully formulas (3.2.6) and (3.2.7).]
(c) $f(x)=\left\{\begin{array}{ll}0 & x<L / 2 \\ 1 & x>L / 2\end{array}\right.$ [Hint: Add the functions in parts (b) and (c).]

Solution

Assume that $f(x)$ is a piecewise smooth function on the interval $0 \leq x \leq L$. The even extension of $f(x)$ to the whole line with period $2 L$ is given by the Fourier cosine series expansion,

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. The coefficients A_{n} are obtained by multiplying both sides by $\cos \frac{p \pi x}{L}$ (p being an integer), integrating both sides with respect to x from 0 to L, and taking advantage of the fact that cosine functions are orthogonal with one another.

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

A_{0} is obtained just by integrating both sides of the series expansion with respect to x from 0 to L.

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

Part (a)
For $f(x)=x$, the coefficients are

$$
A_{0}=\frac{1}{L} \int_{0}^{L} x d x=\frac{L}{2}
$$

and

$$
A_{n}=\frac{2}{L} \int_{0}^{L} x \cos \frac{n \pi x}{L} d x=\frac{2\left[-1+(-1)^{n}\right] L}{n^{2} \pi^{2}} .
$$

Below is a graph of the function and its even extension to the whole line.

Below is a graph using the first five terms in the infinite series:

$$
f(x) \approx A_{0}+\sum_{n=1}^{5} A_{n} \cos \frac{n \pi x}{L} .
$$

Part (b)

For $f(x)=0$ if $x<L / 2$ and $f(x)=1$ if $x>L / 2$, the coefficients are

$$
A_{0}=\frac{1}{L}\left(\int_{0}^{L / 2} 0 d x+\int_{L / 2}^{L} d x\right)=\frac{1}{2}
$$

and

$$
A_{n}=\frac{2}{L}\left(\int_{0}^{L / 2} 0 \cos \frac{n \pi x}{L} d x+\int_{L / 2}^{L} \cos \frac{n \pi x}{L} d x\right)=-\frac{2}{n \pi} \sin \frac{n \pi}{2} .
$$

Below is a graph of the function and its even extension to the whole line.

Below is a graph using the first ten terms in the infinite series:

$$
f(x) \approx A_{0}+\sum_{n=1}^{10} A_{n} \cos \frac{n \pi x}{L}
$$

Part (c)

For $f(x)=0$ if $x<L / 2$ and $f(x)=1$ if $x>L / 2$, the coefficients are

$$
A_{0}=\frac{1}{L}\left(\int_{0}^{L / 2} 0 d x+\int_{L / 2}^{L} d x\right)=\frac{1}{2}
$$

and

$$
A_{n}=\frac{2}{L}\left(\int_{0}^{L / 2} 0 \cos \frac{n \pi x}{L} d x+\int_{L / 2}^{L} \cos \frac{n \pi x}{L} d x\right)=-\frac{2}{n \pi} \sin \frac{n \pi}{2} .
$$

Below is a graph of the function and its even extension to the whole line.

Below is a graph using the first ten terms in the infinite series:

$$
f(x) \approx A_{0}+\sum_{n=1}^{10} A_{n} \cos \frac{n \pi x}{L}
$$

